Sulfide : quinone oxidoreductase (SQR) from the lugworm Arenicola marina shows cyanide- and thioredoxin-dependent activity.
نویسندگان
چکیده
The lugworm Arenicola marina inhabits marine sediments in which sulfide concentrations can reach up to 2 mM. Although sulfide is a potent toxin for humans and most animals, because it inhibits mitochondrial cytochrome c oxidase at micromolar concentrations, A. marina can use electrons from sulfide for mitochondrial ATP production. In bacteria, electron transfer from sulfide to quinone is catalyzed by the membrane-bound flavoprotein sulfide : quinone oxidoreductase (SQR). A cDNA from A. marina was isolated and expressed in Saccharomyces cerevisiae, which lacks endogenous SQR. The heterologous enzyme was active in mitochondrial membranes. After affinity purification, Arenicola SQR isolated from yeast mitochondria reduced decyl-ubiquinone (K(m) = 6.4 microm) after the addition of sulfide (K(m) = 23 microm) only in the presence of cyanide (K(m) = 2.6 mM). The end product of the reaction was thiocyanate. When cyanide was substituted by Escherichia coli thioredoxin and sulfite, SQR exhibited one-tenth of the cyanide-dependent activity. Six amino acids known to be essential for bacterial SQR were exchanged by site-directed mutagenesis. None of the mutant enzymes was active after expression in yeast, implicating these amino acids in the catalytic mechanism of the eukaryotic enzyme.
منابع مشابه
Functional analysis of three sulfide:quinone oxidoreductase homologs in Chlorobaculum tepidum.
Sulfide:quinone oxidoreductase (SQR) catalyzes sulfide oxidation during sulfide-dependent chemo- and phototrophic growth in bacteria. The green sulfur bacterium Chlorobaculum tepidum (formerly Chlorobium tepidum) can grow on sulfide as the sole electron donor and sulfur source. C. tepidum contains genes encoding three SQR homologs: CT0117, CT0876, and CT1087. This study examined which, if any, ...
متن کاملRedox regulation of mitochondrial sulfide oxidation in the lugworm, Arenicola marina.
Sulfide oxidation in the lugworm, Arenicola marina (L.), is most likely localized in the mitochondria, which can either produce ATP with sulfide as a substrate or detoxify it via an alternative oxidase. The present study identified selective activators of the energy-conserving and the detoxifying sulfide oxidation pathways respectively. In the presence of the ROS scavengers glutathione (GSH) an...
متن کاملPurification and characterization of sulfide:quinone oxidoreductase from an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans.
Sulfide:quinone oxidoreductase (SQR) was purified from membrane of acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans NASF-1 cells grown on sulfur medium. It was composed of a single polypeptide with an apparent molecular mass of 47 kDa. The apparent K(m) values for sulfide and ubiquinone were 42 and 14 muM respectively. The apparent optimum pH for the SQR activity was about...
متن کاملCyanobacterial sulfide-quinone reductase: cloning and heterologous expression.
The gene encoding sulfide-quinone reductase (SQR; E.C.1.8.5.'), the enzyme catalyzing the first step of anoxygenic photosynthesis in the filamentous cyanobacterium Oscillatoria limnetica, was cloned by use of amino acid sequences of tryptic peptides as well as sequences conserved in the Rhodobacter capsulatus SQR and in an open reading frame found in the genome of Aquifex aeolicus. SQR activity...
متن کاملSingle eubacterial origin of eukaryotic sulfide:quinone oxidoreductase, a mitochondrial enzyme conserved from the early evolution of eukaryotes during anoxic and sulfidic times.
Mitochondria occur as aerobic, facultatively anaerobic, and, in the case of hydrogenosomes, strictly anaerobic forms. This physiological diversity of mitochondrial oxygen requirement is paralleled by that of free-living alpha-proteobacteria, the group of eubacteria from which mitochondria arose, many of which are facultative anaerobes. Although ATP synthesis in mitochondria usually involves the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The FEBS journal
دوره 275 6 شماره
صفحات -
تاریخ انتشار 2008